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We present a numerical study of mixing and reaction efficiency in closed domains. In particular, we focus
our attention on laminar flows. In the case of inert transport the mixing properties of the flows strongly depend
on the details of the Lagrangian transport. We also study the reaction efficiency. Starting with a little spot of
product, we compute the time needed to complete the reaction in the container. We find that the reaction
efficiency is not strictly related to the mixing properties of the flow. In particular, reaction acts as a “dynamical
regulator.”
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I. INTRODUCTION

Transport of reacting species advected by laminar or tur-
bulent flows �advection reaction diffusion—ARD—systems�,
is an issue of obvious interest in many fields, e.g., population
dynamics �propagation of plankton in oceanic currents �1��,
reacting chemicals in the atmosphere �e.g., ozone dynamics
�2��, complex chemical reactions, and combustion �3�. For
recent interesting experimental studies, see Ref. �4�.

The simplest nontrivial case of ARD is described by a
scalar field ��x , t�, which represents the concentration of re-
action products, such that � is equal to 1 in the regions where
the reaction is over �the stable phase�, and � is zero where
fresh material is present �the unstable phase�. The field
��x , t� evolves according to the following equation:

�t� + �u · � �� = D0�� +
1

�
f��� , �1�

where u is a given incompressible velocity field and D0 is the
molecular diffusion coefficient. Of course, the reaction is de-
scribed by the term f��� /�, where � is the time scale of the
chemistry.

The form of the reacting term f��� depends on the prob-
lem under investigation; a rather popular case is the so-called
Fisher-Kolmogorov-Petrovsky-Piskunov �FKPP� nonlinear-
ity �5� f���=��1−��, which describes the autocatalytic pro-
cess A+B→2A �in such a case � is the concentration of the
species A�. This nonlinearity belongs to the more general
class of FKPP-type nonlinearity characterized by having the
maximum slope of f��� in �=0. Those nonlinearity terms
give rise to the so-called pulled fronts for which front dy-
namics can be understood by linear analysis, since it is es-
sentially determined by the ��x , t��0 region �the front is
pulled by its leading edge�. In the case of front propagation
in reaction-diffusion systems �i.e., with u=0� it is possible to
show �6� that, for FKPP-type nonlinearity, a moving front
�i.e., an “invasion” of the stable phase, �=1, in the unstable
one, �=0� develops with propagation speed given by v0
=2�D0f��0� /�.

Another important class of nonlinearity terms is the non-
FKPP-type, for which the maximal growth rate is not real-
ized at �=0 but at some finite value of �, where the details of
the nonlinearity of f��� are important. In this case front dy-
namics is often referred to as pushed, meaning that the front
is pushed by its �nonlinear� interior. At variance with the
previous case, the determination of the front speed now re-
quires a detailed nonlinear analysis. It is not possible to give
a general result for the front speed, but only the bound �when
u=0� 2�D0f��0��v0�2�D0sup��f��� /�� �6� can be ob-
tained. An important example of non-FKPP-type nonlinearity
is given by the so-called Arrhenius term: f���= �1−��e−�c/�.

In the following we principally adopt the FKPP-type non-
linearity. However, in order to investigate the relevance of
f���, we also discuss the non-FKPP-type nonlinearity.

If we suppress the reacting term f��� /� in �1�, we obtain
the advection-diffusion equation which rules the evolution of
the concentration P�x , t� of inert particles

�tP + �u · � �P = D0�P . �2�

Let us underline that for both processes �1� and �2� �reactive
and inert transport, respectively�, one can face different
classes of problems, namely the asymptotic and nonasymp-
totic ones �7�.

By asymptotic properties we mean the features of Eqs. �1�
and �2� at long times and large spatial scales, i.e., much
larger than the typical length � of u. In such a limit, under
rather general conditions �8�, Eq. �2� reduces to an effective
diffusion equation

�tP = 	
i,j

Dij
e �ij

2 P , �3�

where the effective diffusion tensor Dij
e depends, often in a

nontrivial way, on u. In a similar way for the ARD problem,
if we start with a localized region in which �=1 �elsewhere
�=0�, one asymptotically has a front propagation with a
front speed v f depending on � , D0, and u �9�.
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Although the asymptotic problems are well defined from a
mathematical viewpoint, sometimes their relevance in real
life is rather poor. Often, e.g., in geophysics, the spatial size,
L, of the system is comparable with the typical length of the
flow, �, so it is not possible to use Eq. �3� for the dispersion
of passive inert scalar fields, and it is necessary to treat the
problem using some indicators able to go beyond the diffu-
sion coefficient. Such a problem had been studied, for ex-
ample, in Refs. �7,10� using the finite-size Lyapunov expo-
nents, which properly characterize the transport mechanism
at a given �spatial� scale. In a similar way, considering cases
with L not too large compared with �, one has nontrivial
features also in ARD systems. As an example we can men-
tion Ref. �11�, where it had been found that the burning
efficiency in a closed domain does not increase for large
values of the strength of the velocity field.

As a general remark, we stress that both in inert and re-
active transport the Eulerian turbulence has a minor role. As
examples, we can mention the Lagrangian chaos, i.e., the
irregular behavior of passive tracers also for laminar flow
�12� and the poor role of the presence of small scales in the
velocity field for front propagation �13�.

In this paper we discuss the mixing and reaction effi-
ciency �in Eqs. �2� and �1�, respectively� in systems advected
by a given velocity field, u, in closed domains. For mixing
efficiency we intend the capacity of a flow to spread particu-
late inert material starting from a small region over the
whole system domain. When the material is chemically ac-
tive, the question of interest concerns the time needed to
complete the reaction in the system domain, which we call
reaction efficiency. At an intuitive level one could expect a
link between mixing and reaction efficiency, because both
are related to the transport properties of the velocity field, but
we show that cases exist in which this relation is very weak.

We will see that for the inert transport problem �2�, the
mixing efficiency strongly depends on the features of the
dynamical system

dx

dt
= u , �4�

in particular if large-scale chaos is present or not. On the
contrary, for the reacting case �1�, the presence of large-scale
chaos has a minor role. This result is rather close to those
obtained in other subtle issues such as the classical limit of
quantum mechanics �14�, or metastable balance between
chaos and diffusion �15�.

The paper is organized as follows: In Sec. II we introduce
two flow models for the velocity field u and we discuss the
mixing efficiency �for inert particles� in closed domains at
varying the chaotic properties of Eq. �4�. Section III is de-
voted to the burning efficiency in the reactive case. We will
see that, at variance with the inert case, the details of the
Lagrangian transport are not very relevant. In Sec. IV the
reader finds remarks and conclusions.

II. MIXING EFFICIENCY OF INERT TRANSPORT

The limit case D0=0 in Eq. �2� is related to the Lagrang-
ian deterministic motion �4�. When molecular diffusion is

present, we have to consider the Langevin equation obtained
by adding a noisy term to �4�

dx

dt
= u + �2D0� , �5�

where � is a white noise. Therefore, Eq. �2� is nothing but
the Fokker-Planck equation related to �5�.

Since we are interested in the mixing in closed domains
�, we have to specify the boundary conditions: in the case
D0=0 the perpendicular component of u on the border ��
must be zero. In 2D it is very easy to impose this constraint.
Writing u= ��y	 ,−�x	�, one has 	=const for x on ��.
Analogous in the case D0
0 is the no-flux condition
�P /�x�
��=0. In terms of the Langevin equation �5� this
corresponds to a reflection of the trajectory x�t� on ��.

In the following we will limit our attention to 2D cases,
i.e.,

	�x,y,t� = 	0�x,y� + �	1�x,y,t� , �6�

where 	1 is a time-periodic function of period T.
First, we analyze the case of D0=0. If �=0, Eq. �4� cannot

exhibit a chaotic behavior. On the other hand, if ��0 one
can have chaos �and this is the typical feature� around the
separatrix �periodic orbit of infinite period�. At small � chaos
is restricted to a limited region and it has just a poor role for
the mixing in �. In order to have “large-scale” chaotic mix-
ing �i.e., the possibility to cross the unperturbed separatrix�, �
must be larger than a certain critical value �c �which depends
on T�. This is the essence of the celebrated “overlap of the
resonances criterion” by Chirikov �16,17�.

It is easy to realize that, if D0�0, after a sufficiently long
time, tracers will invade the whole basin, i.e., there will be
no more barriers to transport. The interesting question in
such a case is to understand the mechanism which deter-
mines the mixing time, i.e., the time to have a spatial homog-
enization due to the mixing process.

Consider as initial condition a distribution P�x ,0� local-
ized around x0: in Lagrangian terms an ensemble of particles
initially concentrated in a small region of size �0. There are
two limit cases in which it is simple to understand the local
transport properties, namely for very large scale r, i.e., r

�, and for very small scales, i.e., r��. Let us remember
that � is the typical spatial scale of the flow u. In the last
case, if D0=0 and the dynamical system given by Eq. �4� is
chaotic, we have, if 
�x�t�
��


�x�t�
 � 
�x�0�
e�t. �7�

From the previous equation, one could naively conclude that
in a closed domain of size L the typical mixing time is

�m �
1

�
log

L

�0
�

1

�
. �8�

Of course this is a very crude conclusion which does not
consider some basic facts �7,10�:

�i� the � in Eq. �8� usually depends on the initial condi-
tion, so instead of � one could consider the Kolmogorov-
Sinai entropy �17�
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hKS = 

�

��x�d��x� , �9�

where ��x�=limt→�lim�0→0�1/ t�ln
�x�t�
 /�0 with the initial
condition starting from x. Equation �9� follows from the
symplectic nature of our bidimensional problem; there-
fore, ��x� can be positive or zero �17�;

�ii� the existence of barriers �in the nonoverlap cases�;
�iii� the effect of noise �i.e., molecular diffusivity�;
�iv� in Eq. �8� one assumes the possibility to linearize the

equation for �x�t�.
In the opposite limit r
� the asymptotic transport is de-
scribed by the effective Fick equation �3�, and the mixing
time is simply

�m �
L2

De , �10�

where De is the effective diffusion coefficient. For the sake
of simplicity we ignore the tensorial nature of Dij

e . Also in
this case there are some caveats:

�i� Equation �10� holds only if L
�;
�ii� Equation �10� ignores �possible important� transient

effects.
In this paper we treat the nonasymptotic case, i.e., L��.

Let us discuss a rather natural procedure for the charac-
terization of the mixing efficiency. Introduce a coarse grain-
ing of the phase space � �note that in this case the phase
space coincides with the physical space �x ,y��, with N square
cells of size �. As initial condition we take N
1 particles in
a unique cell. At time t
0 we compute the quantity

Pi�t� =
ni�t�
N

, �11�

which gives the percentage of particles in the ith cell �ni�t�
being the number of particles in the ith cell at time t�. Then,
we define the “occupied area,” A�t�, as the percentage of
“occupied” cells. By the term occupied we mean that the
number of particles in the cell is larger than a preassigned
quantity �e.g., 25%� of the average number of particles per
cell in the uniform dispersion situation, i.e., Pi�t�
c /N
where c=0.25

A�t� =
1

N
	
i=1

N

��Pi�t� −
c

N
� , �12�

where ��·� is the step function.
As an indicator of the mixing efficiency, we compute the

mixing time as the first time at which a given percentage, �,
of the total area is filled up

t� = min�t:A�t� = �� . �13�

Another possible indicator of the mixing efficiency is the
following:

Q�t� =
1

N
	
i=1

N �Pi�t� −
1

N
�2

, �14�

which measures the average distance between the percentage
of particles in the cells at time t and the percentage of par-
ticles referred to a uniform distribution. The system is per-
fectly mixed when Q=0. It is reasonable to expect that Q�t�
decreases exponentially �at least at large times�. The behav-
ior at large t of the quantity Q�t� is clearly related to the
spectrum of the operator

L = − �u · � � + D0� .

The largest eigenvalue �1=0 is in correspondence with the
eigensolution �=constant; if the second eigenvalue �2�0,
then, at large times, one has

Q�t� � e−2
�2
t.

Of course �2 can depend both on the details of u and the
value of D0 �18�.

A. Flow models

Let us now introduce the velocity fields we considered,
namely the meandering jet and the Stokes flow.

1. Meandering jet

The meandering jet flow �19,20�, first introduced as a ki-
nematic model for the Gulf Stream, is often used to describe
western boundary current extensions in the ocean. This flow
has a periodic spatial structure of wavelength � �along the x
axis�, characterized by the simultaneous presence of regions
with different dynamical properties: the jet core, where the
motion is ballistic, some recirculation zones where particles
tend to be trapped, and an essentially quiescent far field. In a
frame moving eastward with a velocity coinciding with the
phase speed, and after a proper nondimensionalization, its
stream function is

	�x,y,t� = − tanh� y − B�t�cos kx
�1 + k2B�t�2sin2kx

� + cy,

where B�t� = B0 + � cos��t + �� . �15�

Here and in the following, we use the parameter values:
k=2� /�=4� /15, B0=1.2, �=� /2, c=0.12, for the wave
number, the unperturbed meanders’ amplitude, a perturba-
tion’s phase, and the intensity of the far field, respectively; a
sketch of the streamlines for the stationary flow is presented
in Fig. 1. With these parameters, no particles reach the far
field, and no trajectories attain values in 
y
 larger than 4
�even though, in general, we expect a low but nonzero frac-
tion of them to visit that area�.

The time dependence of the stream function is sufficient
to produce Lagrangian chaos. The “chaoticity degree” is con-
trolled by the two parameters � and �. Specifically, there
exists a threshold value �c��� determining a transition from
local to large-scale chaos, in agreement with Chirikov’s
overlap of the resonances criterion �16,17�. In the first case
����c� chaos is confined to the stochastic layers around the
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separatrices, while in the second one ��
�c� a large part of
the phase space is visited by a chaotic trajectory, indicating
the disappearance of any dynamical barriers to cross-stream
transport �10�. In the plane �� ,�� the relation �c=�c��� de-
fines a curve �Fig. 2� which separates regions with different
dynamical properties, allowing one to discriminate between
a nonoverlap �local chaos, i.e., chaos in a bounded region of
�� and an overlap �large-scale chaos� regime.

In the following we will discuss transport in a nonasymp-
totic situation, forcing the system to be in a small and closed
basin, i.e., 0�x�2�. We use periodic boundary conditions
along the x axis; along the y axis we set rigid boundary
conditions in order to maintain trajectories in the strip 
y

�4 even in the presence of a nonzero molecular diffusivity:
particles reaching the horizontal lines y=−4, 4 are reflected
backward. We note here that, from a dynamical point of

view, this system resembles the stratospheric polar vortex
�2�, once closed on itself in a circular geometry. This vortex
models a current of isolated air in the high atmosphere, cen-
tered on the poles of the Earth, which has quite an important
role in the dynamics of stratospheric ozone.

2. Stokes flow

This is a simple model of cellular flow, often used in the
past because of its versatility, either from the experimental
point of view or from the computational one �21,22�. Its
spatial structure in the stationary case is rather simple: there
are only recirculation regions. Once periodic time depen-
dence is switched on, stretching and folding of the stream-
lines can be seen and classic “coffee and cream” pathways

FIG. 1. Stationary ��=0� meandering jet streamlines.
FIG. 2. Overlap of the resonances: �c vs �. Here, �0=0.25 is

the typical pulsation of recirculation.

FIG. 3. Meandering jet: dispersion of 10 000 particles at times �from the left to the right�: t=15, 30, 200, in units of T=2� /�
=2� /0.625 �perturbation’s period�; top: �=0.03 �local chaos regime�, bottom: �=0.24 �large-scale chaos regime�.
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take place. The flux is essentially driven from an upper �Vtop�
and a lower �Vbot� velocity; we choose to insert here time
dependence in order to have Lagrangian chaos, setting Vtop
=cos���t��, Vbot=sin���t��. The stream function is

	�x,y,t� =
1

2
��y + 1�cos���t�� + �y − 1�sin���t���

��1 − x2��1 − y2� , �16�

where ��t�=2�t /T, and T is the control parameter. At vary-
ing T the dynamical properties of the system change from
regular to chaotic. The first Lyapunov exponent reaches its
maximum for T comparable to the typical time of the unper-
turbed flow.

The constraint Vtop
2 +Vbot

2 =1 can be looked at as a limited
energy supply to the system.

B. Numerical results

We show here the numerical results for inert transport
under the stirring of the above flows. In order to simulate
more realistic dispersion processes, we integrate Eq. �5�, in-
cluding the effect of a nonzero molecular diffusivity D0.

The study is carried out following the time evolution of a
cloud of N
1 test particles, initially located in a small
square of linear size �0�L �see Fig. 3�.

We show the behavior of the two systems in the local
chaos and large-scale chaos regime. We present mainly the
result for the meandering jet; similar behaviors have been
observed also in the Stokes flow. The role of the two differ-
ent dynamical regimes is clearly seen in Fig. 4, where the
fraction of occupied area is shown. The curves related to
local chaos are always lower than the ones related to large-
scale chaos, and the saturation times needed to invade the
whole domain’s area are significantly different in the two
cases.

FIG. 4. Meandering jet: occupied area vs t, on the left D0=0.001, on the right D0=0.004. Top curve shows the case with overlap of
resonances ��=0.24, �=0.625� �large-scale chaos regime�, bottom curve shows the case with nonoverlap of resonances ��=0.03, �
=0.625� �local chaos regime�.

FIG. 5. On the left, mixing times in the meandering jet: t� vs � at �=0.625. From the top to the bottom: D0=0.001, 0.002, 0.004. On the
right, Stokes flow: mixing times and inverse of Kolmogorov-Sinai entropy �c /hKS� vs T. The time c /hKS �on top� is computed for D0=0;
mixing time curves are, from top to bottom D0=0.0005, 0.001, 0.004.
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For small values of the molecular diffusion coefficient, in
the nonoverlap situation for system �15� it is possible to see
a slowing down of the process, around half of the total area,
due to the diffusive crossing of the jet. Let us incidentally
note that, for D0=0, no crossing of the jet would be possible
for ���c. This can be seen in Fig. 3, where the dispersion of
a cloud of test particles is plotted for the two dynamical
regimes. Anyway, the presence of the noisy term �i.e., D0

0� does not change the scenario if D0 is small. See Fig. 4.

The differences in the saturation times progressively di-
minish for growing values of D0 �left and right part of Fig.
4�. Indeed, molecular diffusivity helps the dispersion pro-
cess, acting itself as a mixing mechanism. For sufficiently
large D0
�O�10−2�—not shown here�, no difference is observable, due
to the more relevant weight of the stochastic term with re-
spect to the deterministic one in the Langevin equation �5�.

The behaviors of t� as function of t �Fig. 5� allow a more
extensive analysis. With the same set of parameters as be-
fore, a wider scan in the values of chaos control parameters
�� for meandering jet, T for Stokes flow� has been carried out
for �=0.9 and various values of D0. As expected, these times
slowly vary with the molecular diffusion coefficient in a
strongly chaotic dynamical regime generated only by the
flow. The dependence on D0 becomes stronger when the dy-
namics only due to u is almost regular. In fact, our results
show the great relevance of the details of the velocity field
on mixing efficiency �see Fig. 5�.

Moreover, we show mixing times for the Stokes flow to-
gether with an entropy graph. We plotted the quantity c /hKS
versus T :1 /hKS has dimensions of time and c is a dimension-
less parameter. Let us note that both t� and 1/hKS have
minima for those values of T which give the most chaotic
dynamics.

We also remark that numerical values of our observables
can depend on initial positions of test particles, but qualita-
tive behaviors are general.

Let us observe that in the purely diffusive case �u=0� t� is
nothing but the “bare” diffusive time needed to invade the

whole domain. In that case we recovered the inverse propor-
tionality relation t��L2 /D0.

III. REACTIVE CASE

Now, we deal with the complete equation �1� studying an
ARD system confined in a closed domain. As an initial con-
dition we consider a small quantity of active material, i.e.,
�=1 in a small region of � with linear size �0, elsewhere
�=0. We numerically compute the time needed for a given
percentage of the total area to be filled by the reaction
�called, in the following, the reacting or burning time�. A
natural and important question is how the burning time de-
pends on the transport properties of the flow.

The velocity fields are the already-presented meandering
jet and Stokes flow. Our main result, obtained in both flows,
is that the burning time is not strictly related to the transport
properties of the flow.

As for the case of inert transport, the principal observable
under investigation is the time needed for a given percentage
of the total area to be burnt. We define

S�t� =
1


�

�

dxdy��x,y,t� , �17�

as the percentage of area burnt at time t, where 
�
 is the area
of the domain �. In our case, we choose an appropriate
localized initial condition such that the initial burnt material
is S�0�=0.005. The reacting or burning time t� is defined as
the time needed for the percentage � of the total area of the
recipient to be burnt, i.e.,

S�t�� = � . �18�

To numerically integrate Eq. �1� we followed a pseudo-
Lagrangian approach. This algorithm uses a path integral for-
mulation for ��x ,y , t�: the field evolution is computed using
the Lagrangian propagator plus a Monte Carlo integration for
the diffusive term; then, the reaction propagator accounts for
the reacting term �for details see Ref. �23��.

FIG. 6. Meandering jet �2��: Snapshots of the field ��x ,y , t� at times �from left to right�: t=4,5,7, in units of T=2� /�=2� /0.625
�perturbation’s period�; top row: �=0.03 �local chaos regime�, bottom row �=0.24 �large-scale chaos regime�; D0=0.001. Black corresponds
to �=1; white indicates �=0.
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We impose a rigid wall condition in the boundaries, in
order to avoid any fluid particle leaving the container, which
could happen due to the noise term added to the velocity
field in the Lagrangian approach.

Figure 6 shows some snapshots of the concentration field
in the meandering jet flow for two different values of the
control parameter. Comparing this figure with the analogous
Fig. 3 in the inert case �using the same set of parameters�, it
is possible to have a clear insight of the different behavior of
the system when reaction is present.

Figure 7, which shows the burnt area as a function of time
in the case of local and large-scale chaos, has to be compared
to the analogous Fig. 4 regarding the occupied area. It is
apparent that, passing from local to large-scale chaotic dy-
namics, while the mixing efficiency changes greatly, the
burning efficiency varies only slightly. This is a first evi-
dence of the regularization properties of the reaction term. A
further confirmation of such a feature comes from Fig. 8,
where the burning efficiency is shown for different control
parameters of the flows. In fact, it is possible to see that, at
varying control parameters, the burning efficiency changes
only slightly. Such a behavior is very different from that

observed for the mixing efficiency �see Fig. 5�. Let us note
that for the Stokes flow different values of the control param-
eter T give similar mixing time, but different burning time
�compare the right part of Figs. 5 and 8�. Therefore, the
burning efficiency is not so strictly related to the mixing
properties of the flow. From Fig. 8 the presence of a plateau
�and a consequent lower bound for the burning time� appears
in the burning efficiency. As shown in Ref. �11�, this plateau
depends mainly on the reaction characteristic time.

The above results confirm the subtle and intriguing com-
bined effect due to Lagrangian chaos, diffusion, and reaction.
This issue is important to many different fields including the
classical limit of quantum mechanics �14�. In Ref. �13� it is
shown that, at variance with the inert transport �24�, for the
asymptotic front propagation properties, the role of the La-
grangian chaos is marginal if diffusion and reaction are
present. In this preasymptotic problem we have that, inde-
pendently of the details of u �in the presence or not of large-
scale chaos� the dependence of t� on D0 is rather weak. In
Fig. 9 we show t� at varying D0 in the plateau region for the
Stokes flow and the meandering jet. We have fair evidence
that t��D0

−1/4, which is rather different from the result in

FIG. 7. Meandering jet. Burnt area vs t, on the left D0=0.001, on the right D0=0.004, �=2, top curve ��=0.24, �=0.625� �large-scale
chaos regime�, bottom curve ��=0.03, �=0.625� �local chaos regime�.

FIG. 8. Burning times vs t. On the left meandering jet. t� ��=0.9� vs �, �=0.625 from the top to the bottom: D0=0.001, 0.002, 0.004.
On the right, Stokes flow. From top to bottom D0=0.0005, 0.001, 0.004. In both cases the time scale of the chemistry is �=2.
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absence of u, i.e., t��L /v f �D0
−1/2. In other words, in the

reacting case, the combined effect of the advection reaction
and diffusion allows an efficient nontrivial “crossing of the
dynamical barriers.”

It is rather natural to wonder about the generality of the
above results if one changes the term f��� using a non-
FKPP-type reaction term. The interesting case is when
f��0�=0, for which the lower bound for the propagation ve-
locity is 0. In this case, situations exist in which the presence
of a velocity field can suppress front propagation �25�. How-
ever, if the reaction takes place in a closed domain, the re-
action term is not pathological �we use the Arrhenius term
f���= �1−��e−�c/�� and the initial size of the active spot �0 is
not too small, the qualitative scenario shown above does not
change. Figure 10 gives clear evidence of this.

The behavior t��D0
−1/4 in the plateau region �see Fig. 9�

is confirmed also in the Arrhenius case.

IV. CONCLUSION

We have performed a numerical study of advection-
reaction-diffusion systems confined in a closed domain and

stirred by two different laminar velocities. Both the velocity
fields can generate a regular or a chaotic Lagrangian dynam-
ics, at varying control parameters. For the mixing properties
of inert particles we observed that, when the dynamics is
strongly chaotic, mixing times weakly depend on molecular
diffusion; this feature becomes much more notable when the
velocity field u is not strong enough to avoid the creation of
recirculation regions.

Then, switching on the reaction term, we analyze the
burning time of a reactive scalar in the same flows. The
principal result of our study is that, while the mixing prop-
erties of the flows can change very much with varying dy-
namical properties, on the contrary the burning efficiency
does not vary so much. We have also shown cases in which
the burning efficiency is not strictly related to the mixing
properties of the flows. Moreover, all the previous results are
quite independent of the shape of the reaction term, f���.
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